Publications in Refereed Journals 

(Impact Factor, J. Comput. Phys. 2.372; SIAM J. Sci. Comput. 1.784; Commun.  Comput. Phys. 1.633;  Comput. Methods Appl. Mech. Engrg. 1.488;  Computers & Fluids 1.431;  J. Sci. Comput. 1.293; J. Comput. Appl. Math. 0.943;Int. J. Numer. Methods Fluids, 0.712; J. Comput. Math.0.667, Sci. China Ser. A-Math, 0.371)

  1. J. Qiu: A class generalization large time step up-wind scheme , J. Jimei Univ.,No. 1, (1992),  (in Chinese).
  2. J. Qiu:  Convergence of the second order large time step EO scheme ,J. Jimei Univ., No. 2, (1994), (in Chinese). 
  3. J. Qiu:  A class of large tine step TVD schemes , J. Jimei Univ., No. 1, (1995), (in Chinese). 
  4. J. Qiu and K. You: Gauss scheme for numerical 0rdinary differential equation, J. Jimei Univ.,No. 4, (1997), (in Chinese). 
  5. J.  Qiu and K. You:  A class of generalization Lax-Friedrichs schemes, J. Jimei Univ., No. 3, (1998), (in Chinese).
  6. J. Qiu and J. Dai: A class of difference schemes with staggered grids for Hamilton-Jacobi equations, J. Nanjing Univ. Aero.  Astro., 32 (2000), 573-578, (in Chinese).
  7. J. Qiu, J. Dai, N. Zhao and R. Wang: A Class of Gauss schemes with staggered grids, Mathematica Applicata, 14-2 (2001) , 1-5, (in Chinese).  
  8. J. Qiu and J. Dai: A Class of Gauss schemes with staggered grids in two dimensions, Chinese J. of Comput. Phys., 18 (2001), 241-246, (in Chinese). 
  9. C. Wang, J. Qiu and J.  Dai: Construction and numerical simulation of high accuracy weighted ENO schemes, Chinese J.  Comput. Phys., 18 (2001), 381-384, (in Chinese).
  10. R. Wang, J. Qiu, J. Dai and N. Zhao: A high resolution Gauss scheme with staggered grid for shallow water equation, Advances in Water Science, 13 (2002),403-408, (in Chinese). 
  11. Z.Xu, R. Liu and J. Qiu: Advances in weighted essentially non-oscillatory schemes for hyperbolic conservation laws, Advances of Mechanics, 34(2004) pp. 9-22, (in Chinese). 
  12. Z. Xu, J. Qiu and R. Liu: Some optimal methods for WENO scheme in hyperbolic conservation laws,  J. of Univ. Sci. Tech. China, 23 (2004), 29-37, (in Chinese). 
  13.  J. Qiu and C.-W. Shu: On the Construction, Comparison, and Local Characteristic Decomposition for High-Order Central WENO Schemes. J. Comput. Phys., 183 (2002) 187-209.
  14. J. Qiu and C.-W. Shu: Finite difference WENO schemes with Lax-Wendroff type time discretizations. SIAM J. Sci.  Comput. 24 (2003)  2185-2198.
  15. J. Qiu and C.-W. Shu: Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method: one-dimensional case, J. Comput. Phys., 193 (2004) 115-135.
  16. J. Qiu and C.-W. Shu: Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method II: Two dimensional case,  Computers & Fluids , 34 (2005) 642-663.
  17. J. Qiu, M. Dumbser and C.-W. Shu: The discontinuous Galerkin method with Lax-Wendroff type time discretizations, Comput. Methods Appl. Mech. Engrg., 194 (2005),4528-4543.
  18. J. Qiu and C.-W. Shu: Hermite WENO schemes for Hamilton-Jacobi equations. J. Comput. Phys., 204(2005), 82-99.
  19. J. Qiu and C.-W. Shu: Runge-Kutta discontinuous Galerkin method using WENO limitersSIAM J. Sci. Comput. , 262005907-929.
  20. J. Qiu and C.-W. Shu: A comparison of trouble cell indicators for Runge-Kutta discontinuous Galerkin method using WENO limiters, SIAM J. Sci. Comput.27 (2005), 995-1013. 
  21. J. Qiu, B.C. Khoo and C.-W. Shu: A numerical study for the performance of the Runge-Kutta discontinuous Galerkin method based on different numerical fluxes ,  J. Comput. Phys., 212 (2006), 540-565.
  22. J. Qiu: WENO schemes with Lax-Wendroff type time discretizations for Hamilton-Jacobi equations, J. Comput. Appl. Math.,  200(2007), 591-605.
  23. J. Qiu: Hermite WENO Schemes with Lax-Wendroff Type Time Discretizations for Hamilton-Jacobi equations, J. Comp. Math.,  25(2007), 131-144.
  24. J. Qiu: A Numerical comparison of the Lax-Wendroff Discontinuous Galerkin Method Based on Different Numerical Fluxes,  J. Sci. Comput., 30(2007), 345-367.
  25. J. Qiu, T. G. Liu and B. C. Khoo: Runge-Kutta discontinuous Galerkin methods for compressible two-medium flow simulations: One-dimensional case, J. Comput.  Phys., 222(2007),  353-373.
  26. J. Qiu, T. G. Liu and B. C. Khoo: Simulations of compressible two-medium flow by Runge-Kutta discontinuous Galerkin methods with the ghost fluid method,  Commun.  Comput. Phys., 3 (2008), 479-504. 
  27. J. Zhu, J. Qiu, C.-W. Shu and M. Dumbser: Runge-Kutta discontinuous Galerkin method using WENO limiters II: Unstructured meshes , J. Comput. Phys., 227 (2008) 4330-4353.
  28. J. Qiu: Development and comparison of numerical fluxes for LWDG methods, Numerical Mathematics: Theory,Methods and Applications, 1 (2008),  435-459.
  29. J. Zhu and J. Qiu: A Class of Forth order Finite Volume Hermite Weighted Essentially Non-oscillatory Schemes,   Science in China, Series A--Mathematics,  51 (2008), 1549-1560. 
  30. H. Dou, H.M. Tsai, B.C. Khoo and J. Qiu: Simulations of detonation wave propagation in rectangular ducts using a three-dimensional WENO scheme, Combustion and Flame 154 (2008) 644-659
  31. C. Lu, J. Qiu and R. Wang:  Weighted Essential Non-oscillatory Schemes for Tidal Bore on Unstructured Meshes, International Journal for Numerical Methods in Fluids,  59 (2009), 611-630.
  32. J. Zhu and J. Qiu: Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method III: Unstructured meshes,  J. Sci. Comput.,  39 (2009),293-321.
  33. T. Sun and J. Qiu:  LWDG method for a multi-class traffic flow model on an inhomogeneous highway, Adv. Appl. Math. Mech., 1 (2009), 438-450.
  34. F. Gao J. Qiu and Q. Zhang: Local Discontinuous Galerkin Finite Element Method and Error Estimates for One Class of Sobolev Equation, J. Sci. Comput., 41 (2009)436-460.
  35. H. Zhu and J. Qiu Adaptive Runge-Kutta discontinuous Galerkin methods using different indicators: One-dimensional case,  J. Comput. Phys.,  228 (2009) , 6957-6976.
  36. C. Lu, J. Qiu and R. Wang: A numerical study for the performance of the WENO schemes based on different numerical fluxes for the shallow water equations,  J. Comp. Math., 28 (2010), 807-825.
  37. J. Zhu and J. Qiu: Trigonometric WENO schemes for hyperbolic conservation laws and highly oscillatory problems,  Commun.Comput. Phys.8 (2010), 1242-1263.
  38. G. Li  and J. Qiu:  Hybrid weighted essentially non-oscillatory schemes with different indicators,   J. Comput. Phys., 229 (2010) 8105-8129.
  39. J. Zhu and J. Qiu: Local DG method using WENO type limiters for convection-diffusion problems, J. Comput. Phys., 230 (2011), 4353-4375.
  40. W. Guo, F. Li and J. Qiu: Local-structure-preserving discontinuous Galerkin methods with Lax-Wendroff type time discretizations for Hamilton-Jacobi equations, J. Sci. Comput., 47 (2011), 239-257.
  41. C. Lu and J. Qiu: Simulations of shallow water equations with Finite Difference Lax-Wendroff Weighted Essential Non-oscillatory Schemes J. Sci. Comput., 47 (2011), 281-302.
  42. J. Zhu, J. Qiu, T. G. Liu and B. C. Khoo:  RKDG methods with WENO type limiters and conservative interfacial procedure for one-dimensional compressible multi-medium flow simulations  Appl. Numer. Math.,  61(2011), 554-580.
  43. R. Abgrall and J. Qiu: Preface to the special issue ^High order methods for CFD problems ̄, J. Comput. Phys., 230 (2011), 4101-4102.
  44. J. Zhu and J. Qiu: Runge-Kutta discontinuous Galerkin method using WENO type limiters: Three dimensional unstructured meshes, Commun.Comput. Phys., 11 (2012), 985-1005.
  45. G. Li, C. Lu  and J. Qiu: Hybrid well-balanced WENO schemes with different indicators for shallow water equations,  J. Sci. Comput., to appear.
  46. C.-S. Huang, T. Arbogast and  J. Qiu:  An Eulerian-Lagrangian WENO finite volume scheme for advection problems, J. Comput. Phys., 231(2012), 4028-4052.
  47. J. Zhu, T. G. Liu, J. Qiu and B. C. Khoo: RKDG methods with WENO limiters for unsteady cavitating flow, Computers & Fluids, 57(2012), 52-65.

 

 


Publications in Conference Proceedings and books

 


Preprints: