Genericity Theory from the Randomness Viewpoint

Liang Yu
Institute of Mathematical Science
Nanjing University

January 11, 2007
Genericity and Randomness

Definition

A real $x \in 2^\omega$ is

(i) *weakly n-generic* if $x \not\in A$ for all Π^0_n meager set A;

(ii) *weakly n-random* if $x \not\in A$ for all Π^0_n null set A.

Definition

A real $x \in 2^\omega$ is

(i) *n-generic* if either $x \in A$ or there exists a finite string $\sigma \prec x$ so that $[\sigma] \cap A = \emptyset$ for all Σ^0_n open set A;

(ii) *n-random* if $x \not\in A$ for set A which is the intersection of a Σ^0_n-test.
Effective Category and Measure Theory

Theorem

Fix a universal Σ^0_n set $A \subseteq \omega \times 2^\omega$, then:

1. (Sacks) $\{(i, n) | \mu(A_i) > 2^{-n}\}$ is Σ^0_n.
2. (Kechris) $\{i | A_i$ is not meager $\}$ is Σ^0_n.

Theorem

For every Σ^0_n set $A \subseteq 2^\omega$,

1. (Kurtz) there is a recursive sequence of Σ^0_{n-1} closed sets $\{F_m\}_m$ so that $\bigcup_n F_m \subseteq A$ and $\mu(\bigcup_m F_m) = \mu(A)$.
2. (Forklore) A is comeager, then there is an recursive sequence of Σ^0_n dense open sets $\{U_m\}_m$ so that $\bigcap_m U_m \subseteq A$.

Uniformizing the Notions

Corollary (Kurtz)

A real \(x \in 2^\omega \) is

1. weakly \(n \)-generic iff \(x \in U \) for every \(\Sigma^0_n \) dense open set \(U \).
2. weakly \(n + 1 \)-random iff \(x \notin \bigcap_m U_m \) for all recursive sequence of \(\Sigma^0_n \) open sets \(\{U_m\}_m \) with \(\lim_m \mu(U_m) = 0 \).
3. \(n \)-random iff \(x \notin \bigcap_m U_m \) for all recursive sequence of \(\Sigma^0_n \) open sets \(\{U_m\}_m \) with \(\mu(U_m) \leq 2^{-m} \).

So weak \(n + 1 \) randomness \(\implies \) \(n \)-randomness \(\implies \) weak \(n \)-randomness and weak \(n + 1 \)-genericity \(\implies \) \(n \)-genericity \(\implies \) weak \(n \)-genericity
Definition

- A Turing degree is hyperimmune if it contains a function not dominated by any recursive functions. Otherwise, it is hyperimmune-free.
- A degree is recursively traceable if every function computed by it can be traced by a recursive function with identity bound.
- A Turing degree is \textit{DNR} if it contains a function f so that $\forall n (f(n) \neq \Phi_n(n))$.
- A Turing degree is \textit{PA} if it contains a real computing a completion of Peano’s Axioms.
Theorem

1. (Forklore) Every weakly 1-generic real is weakly 1-random.
2. (Kurtz+Jockusch) x has a weakly 1-generic degree iff it has a hyperimmune degree, and every 1-generic real is REA.
 (DNWY+Hirschfeldt, Miller) x has a weakly 2-random degree iff it has a 1-random degree and is incomparable with all of nonrecursive Δ^0_2-degrees.
 (Kurtz) Every 2-random real is REA.
3. (Forklore) Every 1-generic degree is GL_{1_1}.
 (Kautz) Every 2-random degree is GL_{1_1}.
 (Kucera) If $x \geq_T \emptyset'$, then it has a 1-random degree.
Characterizing Low Levels II

Theorem

- (Forklore) No 1-generic real has DNR-degree.
- (Forklore) Every 1-random degree is a DNR-degree.
- (Stephan) If x is 1-random, then x has a PA degree iff $x \geq_T \emptyset'$.
- (Yu) A real x is hyperimmune-free, then x is weakly 1-random iff x is weakly 2-random.

Question

Characterizing weakly 1-random degrees.
Kolmogorov Complexity vs Randomness

Theorem

1. *(Schnorr)* x is 1-random iff there is a constant c so that $\forall n(K(x \upharpoonright n) \geq n - c)$.

2. *(Miller and Yu)* x is 1-random iff for every computable function g with $\sum_n 2^{-g(n)} < \infty$, there is a constant c so that $\forall n(C(x \upharpoonright n) \geq n - g(n) - c)$.

3. *(Miller and Yu)* $x \oplus y$ is 1-random iff there is a constant so that $\forall n(K(x \upharpoonright n) + C(y \upharpoonright n) \geq 2n - c)$.

4. *(NST+Miller)* x is 2-random iff there is a constant c so that $\exists \infty n(C(x \upharpoonright n) \geq n - c)$.
Theorem

1. (Nies) There exists a K-trivial 1-generic real.
2. (Forklore) x is weakly 2-generic then x is K-“very low” and K-random infinitely often.

Question

Finding out a complexity characterization of weak 2-randomness and genericity.
Lowness for Randomness and Genericity I

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given a notion G and its relativization G^x, a real x is low for G if $G = G^x$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (Stephan and Yu) A real is low for weakly 1-random then it must have a degree strictly between recursively traceability and hyperimmune-freeness.</td>
</tr>
<tr>
<td>2. (Stephan and Yu) A real is low for weakly 1-generic iff it hyperimmune-free and non-DNR.</td>
</tr>
</tbody>
</table>
Lowness for Randomness and Genericity II

Theorem

1. *(Hirschfeldt and Nies)* A real \(x \) is low for 1-random iff it is there exists a constant \(c \) so that \(\forall n(K(x \upharpoonright n) \leq K(n) + c) \).

2. *(Greenberg, Miller + Yu)* A real is low for 1-generic iff \(x \) is recursive.

3. *(DNWY+Miller + Nies)* A real \(x \) is low for weakly 2-random iff it is there exists a constant \(c \) so that \(\forall n(K(x \upharpoonright n) \leq K(n) + c) \).
Forcing vs Genericity and Randomness

Definition
Let \((P_n, \leq)\) be a forcing notation where
\[P_n = \{ A \subseteq 2^\omega | A \in \Pi^0_n \land \mu(A) > 0 \} \] and \(\leq = \subseteq\). \(A \Vdash \varphi\) if \(\varphi(x)\) is true for all \(x \in A\). \(x\) is Solovay \(n\)-generic if for every \(\Pi^0_n\)-formula, there is a condition \(x \in A\), \(A\) decides \(\varphi\).

Theorem
1. *(Jockusch)* \(x\) is \(n\)-generic iff \(x\) forces all of \(\Sigma^0_n\) sentences in the Cohen forcing sense.
2. *(Kurtz)* \(x\) is weakly \(n\)-random iff \(x\) is Solovay \(n\)-generic.
Van Lambalgen’s Theorem

Theorem

1. (van Lambalgen) \(x \oplus y \) is \(n \)-random iff \(x \) is \(n \)-random and \(y \) is \(n \)-\(x \)-random.

2. (Forklore) \(x \oplus y \) is \(n \)-generic iff \(x \) is \(n \)-generic and \(y \) is \(n \)-\(x \)-generic.
Relativized Randomness

Theorem

1. (Miller and Yu) For any real z and 1-random reals $x \leq_T y$, if y is 1-z-random then x is 1-z-random.

2. (CDGHM) M-Y Theorem holds for n-genericity if $n \geq 2$, but fails for 1-genericity.
Definition

Given a class of sets of reals T,

1. A real x is T-random if x is not in any null set in T.
2. A real x is T-generic if x is in every dense set in T where T is also a class of open sets.

Theorem

1. (Sacks+Hjorth, Nies+Chong, Nies, Yu) Π^1_1-randomness $\subset \Pi^1_1$-Martin-Löf randomness $\subset \Delta^1_1$-randomness $= \Delta^1_1$-Martin-Löf randomness.
2. Π^1_1-genericity $= \Delta^1_1$-genericity.
Traceability

Definition

(i) Let $h : \omega \to \omega$ be a nondecreasing unbounded function that is hyperarithmetical. A Π^1_1-trace/Δ^1_1-trace with bound h is a uniformly Π^1_1/uniformly Δ^1_1 sequence $(T_e)_{e \in \omega}$ such that $|T_e| \leq h(e)$ for each e.

(ii) $A \subseteq \omega$ is Π^1_1-traceable/Δ^1_1-traceable if there is $h \in \Delta^1_1$ such that, for each $f \leq_h A$, there is a Π^1_1-trace/Δ^1_1-trace with bound h such that, for each e, $f(e) \in T_e$.

Proposition (Chong, Nies and Yu)

If x is Π^1_1-traceable, then x is Δ^1_1-traceable.
Lowness properties

Theorem

1. (Chong, Nies and Yu) Lowness for \(\Delta^1_1 \) randomness
 \(= \Delta^1_1 \)-traceability.

2. (Hjorth and Nies) Lowness for \(\Pi^1_1 \)-Martin-Löf randomness
 \(= \) Hyperarithmetic.

3. (Harrington, Nies and Slaman) Lowness for \(\Pi^1_1 \)-randomness
 \(= \) Lowness for \(\Delta^1_1 \) randomness +
 non-random-cuppable.

4. (Yu) Lowness for \(\Delta^1_1 \)-genericity \(\supseteq \) \(\Delta^1_1 \)-traceability.
Beyond Recursion Theory

Theorem

Assume PD if $n \geq 1$.

- (Kechris) There exists a largest Π^{1}_{2n+1} and Σ^{1}_{2n} null set.
- (Kechris) There exists a largest Π^{1}_{2n+1} and Σ^{1}_{2n} meager set.
- (Sacks+Tanaka+Kechris) Each non-null Π^{1}_{2n+1} set contains a Δ^{1}_{2n} real.
- (Hinman+Kechris) Each non-meager Π^{1}_{2n+1} set contains a Δ^{1}_{2n} real.
Some questions

Question

1. How far can genericity and randomness theory go under PD?
2. Finding out an inner model to develop higher genericity and randomness theory.
Thank you