1. The Original Hilbert’s Tenth Problem

In 1900 D. Hilbert asked for an effective algorithm to test whether an arbitrary polynomial equation

\[P(x_1, \ldots, x_n) = 0 \]

(with integer coefficients) has solutions over the ring \(\mathbb{Z} \) of the integers. At that time the exact meaning of algorithm was not known.

The theory of computability was born in the 1930’s. The problem whether \(n \) belongs to a given subset \(A \) of \(\mathbb{N} = \{0, 1, 2, \ldots\} \) is decidable, if and only if the characteristic function of \(A \) is Turing computable (or recursive). [In this case \(A \) is called a recursive set.] An r.e. (recursively enumerable) set is the empty-set \(\emptyset \) or the range of a recursive function, it is also the domain of a partial recursive function. It is well-known that there are nonrecursive r.e. sets. A relation \(R(a_1, \ldots, a_n) \) is said to be r.e. if the set

\[\{ (a_1, \ldots, a_n) : R(a_1, \ldots, a_n) \text{ holds} \} \]

is r.e. A relation \(R(a_1, \ldots, a_m) \) is said to be Diophantine if there is a polynomial \(P(y_1, \ldots, y_m, x_1, \ldots, x_n) \) with integer coefficients such that

\[R(a_1, \ldots, a_m) \iff \exists x_1 \cdots \exists x_n [P(a_1, \ldots, a_m, x_1, \ldots, x_n) = 0] \]

where variables range over \(\mathbb{N} \). A set \(A \subseteq \mathbb{N} \) is Diophantine if and only if the predicate \(a \in A \) is Diophantine. It is easy to show that a Diophantine set is an r.e. set.

In 1961 Davis, Putnam and J. Robinson [Ann. Math.] successfully showed that any r.e. set is exponential Diophantine, that is, any r.e. set \(W \) has the representation

\[a \in W \iff \exists x_1, \ldots, x_n [P(a, x_1, \ldots, x_n, 2^{x_1}, \ldots, 2^{x_n}) = 0] \]
where P is a polynomial with integer coefficients. Observe that the Fibonacci sequence \{F_n\} defined by

\[F_0 = 0, \quad F_1 = 1, \quad \text{and} \quad F_{n+1} = F_n + F_{n-1} \quad (n = 1, 2, 3, \ldots) \]

increases exponentially. In 1970 Matijasevič took the last step to show that the relation $y = F_{2x}$ is Diophantine. It follows that the exponential relation $a = b^c$ is Diophantine, i.e. there exists polynomial $P(a, b, c, x_1, \ldots, x_n)$ with integer coefficients such that

\[a = b^c \iff \exists x_1, \ldots, x_n [P(a, b, c, x_1, \ldots, x_n) = 0]. \]

This surprising result together with the work of Davis, Putnam and Robinson leads to the following important result.

Theorem 1. Any r.e. set is Diophantine.

As some r.e. sets are not recursive, HTP over \mathbb{N} is unsolvable, we also say that \exists^n over \mathbb{N} (with n arbitrary) is undecidable. Lagrange’s theorem in number theory states that any $n \in \mathbb{N}$ can be written as the sum of four squares. Thus $P(x_1, \ldots, x_n) = 0$ has solutions over \mathbb{N} if and only if

\[P(u_1^2 + v_1^2 + y_1^2 + z_1^2, \ldots, u_n^2 + v_n^2 + y_n^2 + z_n^2) = 0 \]

has solutions over \mathbb{Z}. If \exists^n over \mathbb{Z} is decidable, then so is \exists^n over \mathbb{N}. Now that \exists^n over \mathbb{N} is undecidable, so is \exists^n over \mathbb{Z}, i.e. HTP is unsolvable!

It should be mentioned that a whole proof the unsolvability of HTP is very long and full of ingenious techniques. A modern proof given by J. P. Jones and Matijasevič [Amer. Math. Monthly, 1991] involves clever arithmetization of register machines.

Theorem 1 implies the following interesting result.

Corollary 1. Let f be a recursive function of one variable. Then for some polynomial $Q(x, x_0, \ldots, x_n)$ with integer coefficients we have

\[f(x) = y \iff \exists x_0, \ldots, x_n [Q(x, x_0, \ldots, x_n) = y]. \]

Proof. As the relation $f(x) = y$ is an r.e. relation, there exists a polynomial $P(x, y, x_1, \ldots, x_n)$ with integer coefficients such that

\[f(x) = y \iff \exists x_1, \ldots, x_n [P(x, y, x_1, \ldots, x_n) = 0]. \]

Thus

\[f(x) = y \iff \exists x_0, x_1, \ldots, x_n [1 - P^2(x, x_0, x_1, \ldots, x_n) > 0 \land x_0 = y] \]

\[\iff \exists x_0, x_1, \ldots, x_n [(x_0 + 1)(1 - P^2(x, x_0, x_1, \ldots, x_n)) = y + 1] \]

\[\iff \exists x_0, x_1, \ldots, x_n [Q(x, x_0, x_1, \ldots, x_n) = y] \]

where

\[Q(x, x_0, x_1, \ldots, x_n) = (x_0 + 1)(1 - P^2(x, x_0, x_1, \ldots, x_n)) - 1. \]

It is well-known that a nonconstant polynomial $P(x_1, \ldots, x_n) \in \mathbb{Z}[x_1, \ldots, x_n]$ cannot always take prime values. However, we have the following surprising result.
Corollary 2. There exists a polynomial $Q(x_1, \cdots, x_n)$ with integer coefficients such that the positive integers in the range of Q (variables run over \mathbb{N}) are just the primes.

Proof. Let p_x denote the xth prime. Clearly the function p_x is recursive. Applying Corollary 1 we then obtain the desired result.

2. Reduction of unknowns in Diophantine Representations

For a fixed nonrecursive set W, there exists a polynomial P with integer coefficients such that

$$a \in W \iff \exists x_1, \cdots, x_\nu [P(a, x_1, \cdots, x_\nu) = 0].$$

Thus \exists^ν over \mathbb{N} is undecidable. Note that here ν is a particular number (not an arbitrary number). To find the least ν with \exists^ν over \mathbb{N} undecidable, is a very hard problem. In the summer of 1970 Matijasevič announced that $\nu < 200$, soon J. Robinson pointed out that $\nu \leq 35$. Then Matijasevič and Robinson cooperated in this direction, in 1973 they [Acta Arith. 1975] obtained that $\nu \leq 13$, actually they showed that any diophantine equation over \mathbb{N} can be reduced to one in 13 unknowns. Among lots of techniques they used, here I mention the following one which can be used to reduce unknowns greatly.

Theorem 2 (Matijasevič-Robinson Relation-Combining Theorem). Let $k \in \mathbb{N}$. Then there exists a polynomial $M_k(x_1, \cdots, x_{k+4})$ with integer coefficients such that for any given integers $A_1, \cdots, A_k, B(\neq 0), C, D$ we have

$$A_1, \cdots, A_k \in \Box \text{ (the set of squares)}, \ B \mid C, \ D > 0$$

if and only if

$$M_k(A_1, \cdots, A_k, B, C, D, x) = 0 \text{ for some } x \in \mathbb{N}.$$

In 1975 Matijasevič announced further that \exists^9 over \mathbb{N} is undecidable, a complete proof of this 9-unknowns theorem was given by Jones [J. Symbolic Logic, 1982].

As the original HTP is considered over \mathbb{Z}, what about the smallest μ such that \exists^μ over \mathbb{Z} is undecidable? By Lagrange’s theorem, one natural variable can be expressed in terms of 4 integer variables. So, if \exists^n over \mathbb{N} (n fixed) is undecidable, then so is \exists^{4n} over \mathbb{Z}. This can be made better. Fermat called an integer in the form

$$1 + 2 + \cdots + n = \frac{n(n+1)}{2}$$

a triangle number. He asserted that every natural number is the sum of three triangle numbers, i.e. we can write $n \in \mathbb{N}$ in the following form:

$$n = \frac{x(x+1)}{2} + \frac{y(y+1)}{2} + \frac{z(z+1)}{2},$$
that is
\[8n + 3 = (2x + 1)^2 + (2y + 1)^2 + (2z + 1)^2. \]

The Gauss-Legendre theorem states that \(n \in \mathbb{N} \) is the sum of three integer squares if and only if \(n \) is not of the form \(4^a(8b + 7) \) where \(a, b \in \mathbb{N} \). It follows that for an integer \(n \) we have
\[n \geq 0 \iff n = x^2 + y^2 + z^2 + z \text{ for some } x, y, z \in \mathbb{Z}. \]

[If \(4n + 1 = a^2 + b^2 + c^2 \), then exactly one of \(a, b, c \) is odd, say \(2 \nmid c \), thus \(a = 2x, b = 2y \) and \(c = 2z + 1 \) for some \(x, y, z \in \mathbb{Z} \).] Therefore the undecidability of \(\exists^n \) over \(\mathbb{N} \) implies the undecidability of \(\exists^{3n} \) over \(\mathbb{Z} \), thus S.P. Tung obtained the undecidability of \(\exists^{27} \) over \(\mathbb{Z} \) from the 9 unknowns theorem. In 1992 I improved this greatly

Theorem 3 (Zhi-Wei Sun, 1992). (i) For any \(n \in \mathbb{N} \), if \(\exists^n \) over \(\mathbb{N} \) is undecidable, then so is \(\exists^{2n+2} \) over \(\mathbb{Z} \).

(ii) \(\exists^{11} \) over \(\mathbb{Z} \) is undecidable.

Part (i) was published in Z. Math. Logik Grundlag. Math. 38(1992). The result follows from my new relation-combining theorem for integers. Combining this with the 9 unknowns theorem we immediately get the undecidability of \(\exists^{20} \) over \(\mathbb{Z} \). The proof of part (ii) is very hard, though somewhat similar to the proof of the 9 unknowns theorem. To obtain a proof I use integer unknowns from the very beginning and study Lucas sequence
\[u_0 = 0, \quad u_1 = 1, \quad u_{n+1} + u_{n-1} = Au_n \quad (n \in \mathbb{Z}) \]

with integer indices.

We remark that up to now no one can find \(P(x, y, z) \in \mathbb{Z}[x, y, z] \) such that
\[x \geq 0 \iff \exists y \exists z[P(x, y, z) = 0]. \]

So, to replace a natural variable we need at least two more integer variables. In view of this, part (i) is interesting and part (ii) is difficult to be improved since \(9 + 2 = 11 \). To express that \(x \) is nonzero we can use two integer unknowns only. S. P. Tung observed that
\[x \neq 0 \iff \exists y \exists z[x = (2y + 1)(3z + 1)]. \]

3. **Classification of Quantifier Prefixes over Diophantine Equations**

We may also consider decidabilities of mixed HTP, that is, the quantifier prefixes over (polynomial) diophantine equation may contain universal quantifiers.

Let’s first consider the problem over \(\mathbb{N} \). It is easy to say that \(\exists \) is polynomial decidable. The decidability of \(\exists^2 \) is not known, though Baker found that a large
class of diophantine equations with two unknowns is decidable. In 1981 Jones proved that $\forall \exists$ is decidable, while the followings are undecidable:

$$\exists \forall \exists$$ (Matijasevič), $$\exists \forall \exists$$ (Matijasevič–Robinson), $$\exists \forall \exists, \forall \exists \exists \exists$$ (Jones).

The decidability of $\exists \forall \exists$ remains open. Recently, Dr. M. Rojas made progress in this direction. He showed that $\exists \forall \exists$ is *generically* decidable (co-NP), namely he gave a precise geometric classification of those $P \in \mathbb{Z}[x, y, z]$ for which the question

$$\exists x \forall y \exists z [P(x, y, z) = 0]$$

may be undecidable, and proved that this set of polynomials is quite small in a rigorous sense. He also showed that, if integral points on curves can be bounded effectively, then $\exists \forall \exists$ is generically decidable as well.

As for the problem over \mathbb{Z}, S.P. Tung [J. Algorithm, 1987] proved that $\forall^n \exists$ is co-NP-complete. I proved the undecidabilities of $\forall^{10} \exists$, $\exists^2 \forall \exists^3$, $\exists \forall \exists^4$ and so on.