An introduction to self-avoiding walks

Qingsong Gu

Department of Math., Nanjing University

March 31, 2021
Some basic notations, Hammersley-Welsh Theorem
Some basic notations, Hammersley-Welsh Theorem
A Theorem of Duminil-Copin and Smirnov
table of content

- Some basic notations, Hammersley-Welsh Theorem
- A Theorem of Duminil-Copin and Smirnov
- SAWs on the pre-Sierpinski gasket
Let $d \geq 1$, consider the lattice $\mathbb{Z}^d (\subset \mathbb{R}^d)$. For $n \geq 0$, we define a walk

$$\gamma = (\gamma_0, \gamma_1, \ldots, \gamma_n), \gamma_i \in \mathbb{Z}^d, |\gamma_{i-1} - \gamma_i| = 1.$$

W_n — the set of all n-walks.
Let $d \geq 1$, consider the lattice $\mathbb{Z}^d (\subset \mathbb{R}^d)$. For $n \geq 0$, we define a walk

$$\gamma = (\gamma_0, \gamma_1, \cdots, \gamma_n), \gamma_i \in \mathbb{Z}^d, |\gamma_{i-1} - \gamma_i| = 1.$$

W_n — the set of all n-walks. The uniform probability measure \mathbb{P}_n on W_n defines the simple random walk on \mathbb{Z}^d.

Qingsong Gu
An introduction to self-avoiding walks
Let $d \geq 1$, consider the lattice $\mathbb{Z}^d (\subset \mathbb{R}^d)$. For $n \geq 0$, we define a walk

$$\gamma = (\gamma_0, \gamma_1, \cdots, \gamma_n), \gamma_i \in \mathbb{Z}^d, |\gamma_{i-1} - \gamma_i| = 1.$$

W_n — the set of all n-walks.

The uniform probability measure \mathbb{P}_n on W_n defines the *simple random walk* on \mathbb{Z}^d.

We define a self-avoiding walk

$$\gamma = (\gamma_0, \gamma_1, \cdots, \gamma_n), \gamma_i \in \mathbb{Z}^d, |\gamma_{i-1} - \gamma_i| = 1, \gamma_i \neq \gamma_j \text{ for any } i \neq j.$$

SAW_n — the set of all self-avoiding walks with length n.

background
how large is c_n?

Denote $c_n = \#\text{SAW}_n$.

Question 1. $c_n =$?
how large is c_n?

Denote $c_n = \#SAW_n$.

Question 1. $c_n =$?

$d = 1$, $c_n = 2$ for any $n \geq 1$.
how large is c_n?

Denote $c_n = \#SAW_n$.

Question 1. $c_n = ?$

$d = 1$, $c_n = 2$ for any $n \geq 1$.

$d = 2$, $c_1 = 4$, $c_2 = 12$, $c_3 = 36$, $c_4 = 100$, ..., $c_{71} \approx 4.2 \times 10^{30}$, ...

......
how large is c_n?

Denote $c_n = \#SAW_n$.

Question 1. $c_n = ?$

$d = 1$, $c_n = 2$ for any $n \geq 1$.

$d = 2$, $c_1 = 4$, $c_2 = 12$, $c_3 = 36$, $c_4 = 100$, ..., $c_{71} \approx 4.2 \times 10^{30}$, ...

......

A rough bound for c_n:

$$d^n \leq c_n \leq 2d(2d - 1)^{n-1}.$$
the connective constant

Observation:

Cutting any $\gamma \in \text{SAW}_{n+m}$ at step n gives a $\gamma' \in \text{SAW}_n$ plus a $\gamma'' \in \text{SAW}_m$.

Proposition

$$c_{n+m} \leq c_n c_m.$$
Observation:
Cutting any $\gamma \in \text{SAW}_{n+m}$ at step n gives a $\gamma' \in \text{SAW}_n$ plus a $\gamma'' \in \text{SAW}_m$.

Proposition

$$c_{n+m} \leq c_n c_m.$$

Hence $\mu_c \equiv \lim_{n \to \infty} c_n^{1/n} = \inf_{n \geq 1} c_n^{1/n} \in [0, \infty)$ exists, called the **connective constant**.

Remark. This works for general lattice (\mathbb{L}, \mathbb{E}).

Qingsong Gu
An introduction to self-avoiding walks
the connective constant

Some examples:

\[\mathbb{Z}^1, \mu_c = 1. \]
the connective constant

Some examples:

$\mathbb{Z}^1, \mu_c = 1. \quad \text{(trivial)}$
the connective constant

Some examples:

\mathbb{Z}^1, $\mu_c = 1$. (trivial)

\mathbb{Z}^2, $\mu_c \approx 2.63815853031$. (exact value unknown)
the connective constant

Some examples:

\mathbb{Z}^1, $\mu_c = 1$. (trivial)

\mathbb{Z}^2, $\mu_c \approx 2.63815853031$. (exact value unknown)
the connective constant

Some examples:

\(\mathbb{Z}^1, \mu_c = 1. \) (trivial)

\(\mathbb{Z}^2, \mu_c \approx 2.63815853031. \) (exact value unknown)

\(\ldots \ldots \)

for the ladder, \(\mu_c = \frac{\sqrt{5}+1}{2}. \) (easy!!)
the connective constant

Some examples:

\mathbb{Z}^1, $\mu_c = 1$. (trivial)

\mathbb{Z}^2, $\mu_c \approx 2.63815853031$. (exact value unknown)

......

for the ladder, $\mu_c = \frac{\sqrt{5}+1}{2}$. (easy!!)

for the hexagonal lattice, $\mu_c = \sqrt{2 + \sqrt{2}}$. (hard!!)
There exists $\kappa > 0$ such that for any $n \geq 1$,

$$\mu_c^n \leq c_n \leq e^{\kappa \sqrt{n}} \mu_c^n.$$

(1)
half-space walks

Choose a direction e_1. $\gamma = (\gamma_0, \cdots, \gamma_n) \in SAW_n$ is said to be a half-space (self-avoiding) walk if

$$\gamma_0(e_1) < \gamma_i(e_1) \quad \text{for any } i = 1, \cdots, n.$$

Denote by HSAW_n the set of all half-space walks with length n and $h_n := \#\text{HSAW}_n$.
Choose a direction e_1. $\gamma = (\gamma_0, \cdots, \gamma_n) \in SAW_n$ is said to be a half-space (self-avoiding) walk if

$$\gamma_0(e_1) < \gamma_i(e_1) \quad \text{for any } i = 1, \cdots, n.$$

Denote by HSAW_n the set of all half-space walks with length n and $h_n := |\text{HSAW}_n|$.

Proposition

$$c_n \leq \sum_{m=0}^{n} h_{n-m} h_{m+1}, \quad n \geq 1. \quad (2)$$
self-avoiding bridges

\(\gamma = (\gamma_0, \cdots, \gamma_n) \in \text{SAW}_n \) is said to be a \((\text{self-avoiding}) \) bridge if

\[\gamma_0(e_1) < \gamma_i(e_1) \leq \gamma_n(e_1) \quad \text{for any } i = 1, \cdots, n - 1. \]

Denote by \(\text{SAB}_n \) the set of all self-avoiding bridges with length \(n \) and \(b_n := \#\text{SAB}_n \).
self-avoiding bridges

\(\gamma = (\gamma_0, \cdots, \gamma_n) \in \text{SAW}_n \) is said to be a (self-avoiding) bridge if

\[\gamma_0(e_1) < \gamma_i(e_1) \leq \gamma_n(e_1) \quad \text{for any } i = 1, \cdots, n - 1. \]

Denote by \(\text{SAB}_n \) the set of all self-avoiding bridges with length \(n \) and \(b_n := \#\text{SAB}_n \).

Proposition

\[b_{n+m} \geq b_n b_m. \]

Define \(\mu_b := \lim_{n \to \infty} b_n^{1/n} = \sup_{n \geq 1} b_n^{1/n} \).

\[b_n \leq c_n \Rightarrow \mu_b \leq \mu_c. \quad (\mu_b = \mu_c \text{ indeed!!}) \]
an unfolding argument

For any given $\gamma \in HSAW_n$, we can find a sequence of integers $a_1 > a_2 > \cdots > a_k \geq 1$ and decompose γ into SABs with widths a_i, $i = 1, \cdots, k$. Denote by $h_{n,[a_1,a_2,\ldots,a_k]}$ the cardinality of the set of all such HSAWs.
an unfolding argument

For any given $\gamma \in HSAW_n$, we can find a sequence of integers $a_1 > a_2 > \cdots > a_k \geq 1$ and decompose γ into SABs with widths a_i, $i = 1, \cdots, k$. Denote by $h_{n,[a_1,a_2,\ldots,a_k]}$ the cardinality of the set of all such HSAWs. By unfolding, we have

$$h_{n,[a_1,a_2,\ldots,a_k]} \leq h_{n,[a_1+a_2,\ldots,a_k]} \leq \cdots \leq h_{n,[a_1+\cdots+a_k]} = b_{n,[a_1+\cdots+a_k]}.$$
an unfolding argument

For any given $\gamma \in HSAW_n$, we can find a sequence of integers $a_1 > a_2 > \cdots > a_k \geq 1$ and decompose γ into SABs with widths a_i, $i = 1, \cdots, k$. Denote by $h_{n,[a_1,a_2,\ldots,a_k]}$ the cardinality of the set of all such HSAWs.

By unfolding, we have

$$h_{n,[a_1,a_2,\ldots,a_k]} \leq h_{n,[a_1+a_2,\ldots,a_k]} \leq \cdots \leq h_{n,[a_1+\ldots+a_k]} = b_{n,[a_1+\ldots+a_k]}.$$

Hence

$$h_n = \sum_{k \geq 1} \sum_{a_1 > a_2 > \cdots > a_k} h_{n,[a_1,a_2,\ldots,a_k]} \leq \sum_{k \geq 1} \sum_{a_1 > a_2 > \cdots > a_k} b_{n,[a_1+\ldots+a_k]} = \sum_{A=1}^{n} P_D(A) b_{n,[A]} \leq P_D(n) b_n,$$

where $P_D(n) := \# \text{ partitions of } n \text{ into different positive integers.}$
a result of Hardy-Ramanujan

Denote by $P_D(n)$ the number of partitions of n into different positive integers.

Theorem (Hardy-Ramanujan 1917)

$$\log P_D(n) \sim \pi \sqrt{n/3}$$ \hspace{1cm} (3)

as $n \to \infty$.
completing the proof of Hammersley-Welsh

Using upper bound of $P_D(n)$, we obtain

$$h_n \leq e^{C\sqrt{n}} b_n.$$

Combining with (2),

$$c_n \leq \sum_{m=0}^{n} h_{n-m} h_{m+1} \leq \sum_{m=0}^{n} e^{C\sqrt{n-m}} b_{n-m} \cdot e^{C\sqrt{m+1}} b_{m+1}$$

$$\leq (n+1) e^{C'\sqrt{n}} b_{n+1} \leq (n+1) e^{C'\sqrt{n}} b_{n+1} \leq e^{\kappa\sqrt{n} \mu_c^n}.$$
the known and unknown

The predicted asymptotic of c_n for \mathbb{Z}^d:

$$c_n \sim A n^{\gamma-1} \mu_c^n$$ as $n \to \infty$.

where

$$\gamma = \begin{cases}
1, & d = 1 \quad \text{(trivial)} \\
\frac{43}{32}, & d = 2 \quad \text{(conjecture)} \\
1.16 \ldots, & d = 3 \quad \text{(unknown)} \\
1, & d = 4 \quad \text{(logarithmic corrections)} \\
1, & d \geq 5 \quad \text{(solved by Hara-Slade)}
\end{cases}$$
mean square displacement

for $\gamma = (\gamma_0 = 0, \gamma_1, \cdots, \gamma_n) \in SAW_n$, denote by $\| \cdot \|$ the Euclidean norm. The *mean square displacement* is defined as

$$E_n \| \gamma_n \|^2 = \frac{1}{\#SAW_n} \sum_{\gamma \in SAW_n} \| \gamma_n \|^2.$$
mean square displacement

for $\gamma = (\gamma_0 = 0, \gamma_1, \cdots, \gamma_n) \in SAW_n$, denote by $|| \cdot ||$ the Euclidean norm. The *mean square displacement* is defined as

$$E_n ||\gamma_n||^2 = \frac{1}{\#SAW_n} \sum_{\gamma \in SAW_n} ||\gamma_n||^2.$$

It is predicted as

$$E_n ||\gamma_n||^2 \sim Dn^{2\nu} \quad \text{as } n \to \infty,$$

where

$$\nu = \begin{cases}
1, & d = 1 \quad \text{(trivial)} \\
\frac{3}{4}, & d = 2 \quad \text{(conjecture)} \\
0.588 \cdots, & d = 3 \quad \text{(unknown)} \\
\frac{1}{2}, & d = 4 \quad \text{(logarithmic corrections)} \\
\frac{1}{2}, & d \geq 5 \quad \text{(solved by Hara-Slade)}
\end{cases}$$
connective constant of the hexagonal lattice

Denote by \(\mathbb{H} \) the hexagonal lattice (or the honeycomb lattice).

Theorem (Duminil-Copin & Smirnov ’12)

\[
\mu_c(\mathbb{H}) = \sqrt{2 + \sqrt{2}}.
\]
strategy of the proof

By Hammersley-Welsh, $\mu_c = \mu_b$. Let $z_c = \frac{1}{\sqrt{2+\sqrt{2}}}$. It is sufficient to show the following two facts:

$$b_n \leq n \left(\sqrt{2 + \sqrt{2}}\right)^n$$

for all $n \geq 1$ \ \ \Rightarrow \ \ \mu_b \leq \sqrt{2 + \sqrt{2}};

\&

$$G(z_c) = \sum_{n=0}^{\infty} c_n z_c^n = \infty$$

\Rightarrow \ \ \mu_c \geq \sqrt{2 + \sqrt{2}}.$$
Let Ω be a simply connected bounded domain in \mathbb{H}.

Fix any $a \in \partial \Omega$ and $\sigma > 0$ and $z > 0$, Define $F_z(x) : \Omega \rightarrow \mathbb{C}$ by

$$F_z(x) = \sum_{\gamma \subset \Omega: \ a \rightarrow x} e^{-i\sigma W_\gamma z |\gamma|},$$

where W_γ is the winding number of γ i.e. $W_\gamma = \frac{\pi}{3} (\# \text{left turns} - \# \text{right turns})$ and $|\gamma|$ is the length of γ.
Lemma

If $\sigma = \frac{5}{8}$ and $z = z_c$, then for every vertex $v \in \Omega$, $F_z(x)$ satisfies the following

$$(p - v)F_z(p) + (q - v)F_z(q) + (r - v)F_z(r) = 0,$$

where p, q, r are the three mid-edges of the three edges adjacent to v.

Remark. Property (6) means F is holomorphic:

$$\oint_C F(\zeta)d\zeta = 0.$$
the upper bound for μ_b

Consider the strip-like domain $S_{T,L}$ with height T and width L. Let

$$A_{T,L}(z) = \sum_{\gamma \subset S_{T,L}, \gamma : a \rightarrow \alpha \setminus \{a\}} z^{|\gamma|},$$

$$B_{T,L}(z) = \sum_{\gamma \subset S_{T,L}, \gamma : a \rightarrow \beta} z^{|\gamma|},$$

$$C_{T,L}(z) = \sum_{\gamma \subset S_{T,L}, \gamma : a \rightarrow \epsilon \cup \epsilon'} z^{|\gamma|}.$$

Lemma

$$1 = \cos \left(\frac{3\pi}{8} \right) A_{T,L}(z_c) + B_{T,L}(z_c) + \cos \left(\frac{\pi}{4} \right) C_{T,L}(z_c). \quad (7)$$
Define $B_T(z_c) = \lim_{L \to \infty} B_{T,L}(z_c)$, we have from above that

$$B_T(z_c) \leq 1.$$

Hence

$$b_n z_c^n \leq \sum_{T=0}^{n} B_T(z_c) \leq n,$$

which implies $b_n \leq n \left(\sqrt{2 + \sqrt{2}}\right)^n$.

Qingsong Gu
An introduction to self-avoiding walks
the lower bound for μ_c

Consider another region Ω_T (a partial hexagonal region), one may show that

$$G(z_c) \geq \sum_{T=1}^{\infty} \sum_{\gamma \subset \Omega_T: a \rightarrow \partial \Omega_T} z_c^{\gamma} \geq \sum_{T=1}^{\infty} 1 = \infty.$$
Let F_0 be the unit triangle with vertices \(\{O, a_0, a_1\} \) in \(\mathbb{R}^2 \), where \(O = (0, 0), a_0 = (1/2, \sqrt{3}/2), b_0 = (1, 0) \).

Define a sequence of graphs F_n inductively by

\[
F_{n+1} = \frac{1}{2} \{ F_n \cup (F_n + a_0) \cup (F_n + b_0) \}.
\]

Let $G_n = 2^n F_n$ and $G = \bigcup_{n=0}^{\infty} G_n$. Let $a_n = 2^n a_0$, $b_n = 2^n b_0$.

For $\gamma = (\gamma_0, \gamma_1, \cdots, \gamma_n)$ a self-avoiding path on G, denote by $|\gamma|$ the length of γ.

Define

\[
\mathcal{W}^{(n)} := \{ \gamma \subset G : \gamma_0 = O, \gamma_{|\gamma|} = a_n, \gamma_i \neq b_n, i \geq 0 \}.
\]
self-avoiding walks on the pre-Sierpinski gasket

Let $Z_n(\beta) = \sum_{\gamma \in \mathcal{W}(n)} e^{-\beta|\gamma|}$.

Theorem (Hattori-Hattori-Kusuoka ’90)

There exists $\beta_c > 0$ such that

(i) if $\beta < \beta_c$, then $\lim_{n \to \infty} 3^{-n} \log Z_n(\beta)$ exists and is positive,

(ii) if $\beta > \beta_c$, then $\lim_{n \to \infty} 2^{-n} \log Z_n(\beta)$ exists and is negative,

and

(iii) $\lim_{n \to \infty} Z_n(\beta_c) = \frac{\sqrt{5}-1}{2}$.

Remark. $\exp(-\beta_c) \approx 0.437057.$
Let \mathbb{P}_n be the uniform probability measure on the set all the self-avoiding paths with length n. Let $\| \cdot \|$ denote the Euclidean norm. Then

Theorem (Hattori-Kusuoka '92)

For any $s > 0$,

$$
\lim_{n \to \infty} \frac{1}{\log n} \mathbb{E}_{\mathbb{P}_n}[\| \gamma(n) \|^s] = \nu s,
$$

where $\nu = \log 2 / \log \left(\frac{7-\sqrt{5}}{2} \right) \approx 0.79862$.

Remark. the exponent $\nu = \log 2 / \log \left(\frac{7-\sqrt{5}}{2} \right) > \nu_{SRW} = \log 2 / \log 5$, where ν_{SRW} is the exponent of mean displacement of simple random walks on G.
how about SAWs on other fractals?

Question:
What happens on the graphs generated by other (connected) fractals?

- Does there exist some β_c such that

$$\sum_{\gamma \subset G: \gamma_0=0} e^{-\beta \gamma} = \infty$$

while

$$\sum_{\gamma \subset G: \gamma_0=0} e^{-\beta \gamma} < \infty$$

for any $\beta > \beta_c$?

- Does there exist ν such that for any $s > 0$,

$$\lim_{n \to \infty} \frac{1}{\log n} \mathbb{E}^n[||\gamma(n)||^s] = \nu s?$$
references

Thank You!!