学术报告

Homogeneous Einstein Finsler metrics on (4n+3)-dimensional spheres

发布人:发布时间: 2020-01-02

字体大小: 【小】 【中】 【大】

题目: Homogeneous Einstein Finsler metrics on (4n+3)-dimensional spheres

报告人:莫小欢 (北京大学)

时间:2020年1月10日 10:00-12:00

地点:蒙民伟楼1105室

摘要: In this lecture, we discuss a class of homogeneous Finsler metrics of vanishing $S$-curvature on a $(4n+3)$-dimensional sphere. We find a second order ordinary differential equation that characterizes Einstein metrics with constant Ricci curvature $1$ among this class. Using this equation we show that there are infinitely many homogeneous Einstein metrics on $S^{4n+3}$ of constant Ricci curvature $1$ and vanishing $S$-curvature. They contain the canonical metric on $S^{4n+3}$ of constant sectional curvature $1$ and the Einstein metric of non-constant sectional curvature given by Jensen in 1973.

邀请人:陈学长 老师