学术报告

【online】分形分析系列报告(一):Equivalence of Besov spaces on p.c.f. self-similar sets

发布人:发布时间: 2020-06-03

字体大小: 【小】 【中】 【大】

分形分析系列报告(一)

题目:Equivalence of Besov spaces on p.c.f. self-similar sets

 

报告人:曹仕平Cornell University, USA

 

报告时间2020619日(周五) 20:30-21:30


摘要:On p.c.f. self-similar sets, of which the walk dimensions of heat kernels are in general larger than 2, we find a sharp region where two classes of Besov spaces, the heat Besov spaces $B^{p,q}_\sigma(K)$ and the Lipschitz-Besov spaces $\Lambda^{p,q}_\sigma(K)$, are identitical. In this talk, we will show that this sharp region is determined by the behavior of harmonic functions, and provide a qualitative description of the sharp region, in connection with critical orders of the heat Besov spaces. In particular, we provide concrete examples that $B^{p,q}_\sigma(K)=\Lambda^{p,q}_\sigma(K)$ with $\sigma>1$.

 

报告方式:Zoom会议 ID5036881879; 地址:https://zoom.com.cn/j/5036881879


邀请人:邱华 老师