学术报告

【online】Sharp W2,p regularity results in the optimal transport problem between convex domains

发布人:发布时间: 2020-09-18

字体大小: 【小】 【中】 【大】

Series Talks on Optimal Transportation Problems, PDEs and Their Applicationsin Image Processing

“最优运输问题、PDE和在图像处理中的应用”系列学术报告

 

题目Sharp W2,p regularity results in the optimal transport problem between convex domains

 

报告人Ovidiu Savin教授(哥伦比亚大学


时间:2020年929日上午 9:00


方式ZOOM会议室  ID625 8567 5203(密码:187446


摘要Given two domains with the same volume, the optimal transport, in its most basic form, consists in mapping one domain into the other by a measure preserving transformation which minimizes a total transport cost. For the quadratic cost, the regularity theory of the map was developed by L. Caffarelli in the early 90s, by making use of its connection with the Monge-Ampere equation. In my talk I will review these results and discuss some recent work in collaboration with Hui Yu concerning the global W2,p estimates for the convex potential.


报告人简介:Ovidiu Savin2003年在德克萨斯大学奥斯汀分校获得博士学位,师从Luis Caffarelli,现为哥伦比亚大学教授。Savin教授最著名的是他在一类半线性方程组整体解的De Giorgi猜想上的重要工作。Savin教授也研究了各种正则性问题,例如二维无穷拉普拉斯方程解的C1正则性和C1, α正则性、Monge-Ampere方程解的边界C1, αW2,p正则性、和退化Monge-Ampere方程解的Schauder估计等。Savin曾在1995年国际奥林匹克数学竞赛中以满分的成绩获得金牌,2006年在国际数学家大会作45分钟报告,2012年获得Stampacchia奖。


邀请人:杨孝平 老师