学术报告
Symmetry and symmetry breaking for the fractional Caffarelli-Kohn-Nirenberg inequality
发布人:发布时间: 2020-12-25
字体大小: 【小】 【中】 【大】
题目: Symmetry and symmetry breaking for the fractional Caffarelli-Kohn-Nirenberg inequality
报告人:敖微微 (武汉大学)
时间:2021年1月8日 9:00-10:20
地点:蒙民伟楼1105室
摘要: In this talk, I will discuss about the following fractional version of the Caffarelli-Kohn-Nirenberg inequality
\begin{equation}\label{ineq_u}
{\Lambda}\left(\int_{\r^n}\frac{|u(x)|^{p}}{|x|^{{\beta}{p}}}\,dx\right)^{\frac{2}{p}}\leq
\int_{\r^n}\int_{\r^n}\frac{(u(x)-u(y))^2}{|x-y|^{n+2\gamma}|x|^{{\alpha}}|y|^{{\alpha}}}\,dy\,dx\end{equation}
for $\gamma\in(0,1)$, $n>2\gamma$, and $\alpha,\beta\in\r$ satisfy
\begin{equation*}\label{parameter}
\alpha\leq \beta\leq \alpha+\gamma, \ -2\gamma<\alpha<\frac{n-2\gamma}{2}
\end{equation*}
and
$$
p=\frac{2n}{n-2\gamma+2(\beta-\alpha)}.
$$
We first study the existence and nonexistence of extremal solutions to (\ref{ineq_u}). Our next goal is to show some results for the symmetry and symmetry breaking region for the minimizers. In order to get these result we reformulate the fractional Caffarelli-Kohn-Nirenberg inequality in cylindrical variables and we provide a non-local ODE to find the radially symmetric extremals. We also get the non-degeneracy and uniqueness of minimizers in the radial symmetry class. This is joint work with Azahara DelaTorre and Maria del Mar Gonzalez.
邀请人:陈学长 老师