教师信息

主要课程

微积分I,II(第一层次);  微积分I,II(第二层次);  线性代数

个人简介

副教授,硕士生导师,2010.6至今任教于南京大学数学系。



研究方向:数学物理反问题与不适定问题。



2008.6~2010.6  在南京大学数学系从事博士后工作,期间获得中国博士后科学基金面上一等资助及特别资助。



2012.6.24 -2012.9.23, 2013.12.27-2014.2.26作为Research Fellow访问香港城市大学;



2017.1.9-2.8作为Research Fellow 访问香港理工大学



主持国家自然科学基金青年基金,作为主要成员参加3项国家自然科学基金面上项目。



在国际学术刊物《Inverse Problems》》、《Journal of Inverse and Ill-Posed Problems》、《Inverse Problems in Science and Engineering》等杂志上发表论文35篇, 引次数247次(2018.1.10来自《Mathematical Reviews》数据)。


教育经历

1999-2008兰州大学数学系本硕博

工作经历

2012至今南京大学数学系副教授

2010-2012南京大学数学系讲师

2008-2010南京大学数学系博士后


研究兴趣

数值微分;分数阶数值微分;

抛物方程时间反向问题;抛物方程侧边值问题;反常扩散(时间分数阶,空间分数阶)方程反问题

椭圆方程Cauchy问题


学术兼职

《Inverse Problems》, 《Journal of Computational Physics》, 《Inverse Problems in Science and Engineering》等杂志审稿人;

学术奖励

论文

1. “Time discretization of a tempered fractional {F}eynman-{K}ac equation with measure data” Deng, Weihua|Li, Buyang|Qian, Zhi|Wang, Hong SIAM J. Numer. Anal. 56(2018) : 3249--3275.

2. “A mollification method for a {C}auchy problem for the {H}elmholtz equation” Li, Z. P.|Xu, C.|Lan, M.|Qian, Z. Int. J. Comput. Math. 95(2018) : 2256--2268.

3. “An a posteriori wavelet method for solving two kinds of ill-posed problems” Feng, Xiaoli|Qian, Zhi Int. J. Comput. Math. 95(2018) : 1893--1909.

4. “A regularization framework for mildly ill-posed problems connected with pseudo-differential operator” Xiong, Xiangtuan|Zhuang, E.|Xue, Xuemin|Qian, Zhi J. Comput. Appl. Math. 341(2018) : 1--11.

5. “A new generalized {T}ikhonov method based on filtering idea for stable analytic continuation” Qian, Zhi Inverse Probl. Sci. Eng. 26(2018) : 362--375.

6. “A modified iterative regularization method for ill-posed problems” Xiong, Xiangtuan|Xue, Xuemin|Qian, Zhi Appl. Numer. Math. 122(2017) : 108--128.

7. “A fractional Tikhonov method for solving a Cauchy problem of Helmholtz equation” Qian, Zhi|Feng, Xiaoli Appl. Anal. 96(2017) : 1656--1668.

8. “Numerical solution of two-dimensional radially symmetric inverse heat conduction problem” Qian, Zhi|Hon, Benny Y. C.|Xiong, Xiang Tuan J. Inverse Ill-Posed Probl. 23(2015) : 121--134.

9. “A quasi-boundary-value method for a {C}auchy problem of an elliptic equation in multiple dimensions” Feng, Xiaoli|Ning, Wantao|Qian, Zhi Inverse Probl. Sci. Eng. 22(2014) : 1045--1061.

10. “Numerical solution of a 2{D} inverse heat conduction problem” Qian, Zhi|Feng, Xiaoli Inverse Probl. Sci. Eng. 21(2013) : 467--484.

11. “Regularization methods for the sideways heat equation and the idea of modifying the ``kernel'' in the frequency domain” Qian, ZhiCommun. Appl. Math. Comput. 26(2012) : 298--311.

12. “Differential-difference regularization for a 2D inverse heat conduction problem” Qian, Zhi|Zhang, Qiang Inverse Problems 26(2010) : 095015.

13. “Numerical pseudodifferential operator and {F}ourier regularization” Fu, Chu-Li|Qian, Zhi Adv. Comput. Math. 33(2010) : 449--470.

14. “Wavelets and high order numerical differentiation” Fu, Chu-Li|Feng, Xiao-Li|Qian, Zhi Appl. Math. Model. 34(2010) : 3008--3021.

15. “Optimal modified method for a fractional-diffusion inverse heat conduction problem” Qian, Zhi Inverse Probl. Sci. Eng. 18(2010) : 521--533.

16. “Regularization methods for a {C}auchy problem for a parabolic equation in multiple dimensions” Qian, Zhi J. Inverse Ill-Posed Probl. 17(2009) : 891--911.

17. “The {F}ourier regularization for solving the {C}auchy problem for the {H}elmholtz equation” Fu, Chu-Li|Feng, Xiao-Li|Qian, Zhi Appl. Numer. Math. 59(2009) : 2625--2640.

18. “An optimal modified method for a two-dimensional inverse heat conduction problem” Qian, Zhi J. Math. Phys. 50(2009) : 023502, 9.

19. “A simple regularization method for stable analytic continuation” Fu, Chu-Li|Dou, Fang-Fang|Feng, Xiao-Li|Qian, Zhi Inverse Problems 24(2008) : 065003, 15.

20. “Optimal filtering regularization method for a non-standard backward heat equation” Gao, Xiang|Fu, Chu Li|Qian, Zhi|Xiong, Xiang Tuan|Yan, Liang Gongcheng Shuxue Xuebao 25(2008) : 35--43.

21. “Fourier regularization method for solving a {C}auchy problem for the {L}aplace equation” Fu, C.-L.|Li, H.-F.|Qian, Z.|Xiong, X.-T. Inverse Probl. Sci. Eng. 16(2008) : 159--169.

22. “Two regularization methods for a spherically symmetric inverse heat conduction problem” Cheng, Wei|Fu, Chu-Li|Qian, Zhi Appl. Math. Model. 32(2008) : 432--442.

23. “Two regularization methods for a {C}auchy problem for the {L}aplace equation” Qian, Zhi|Fu, Chu-Li|Li, Zhen-Ping J. Math. Anal. Appl. 338(2008) : 479--489.

24. “Numerical approximation of solution of nonhomogeneous backward heat conduction problem in bounded region” Feng, Xiao-Li|Qian, Zhi|Fu, Chu-Li Math. Comput. Simulation 79(2008) : 177--188.

25. “Semi-discrete central difference method for determining surface heat flux of {IHCP}” Qian, Zhi|Fu, Chu-Li J. Korean Math. Soc. 44(2007) : 1397--1415.

26. “On three spectral regularization methods for a backward heat conduction problem” Xiong, Xiang-Tuan|Fu, Chu-Li|Qian, Zhi J. Korean Math. Soc. 44(2007) : 1281--1290.

27. “A modified {T}ikhonov regularization method for a spherically symmetric three-dimensional inverse heat conduction problem” Cheng, Wei|Fu, Chu-Li|Qian, Zhi Math. Comput. Simulation 75(2007) : 97--112.

28. “Regularization strategies for a two-dimensional inverse heat conduction problem” Qian, Zhi|Fu, Chu-Li Inverse Problems 23(2007) : 1053.

29. “A modified method for determining the surface heat flux of {IHCP}” Qian, Z.|Fu, C.-L.|Xiong, X.-T. Inverse Probl. Sci. Eng. 15(2007) : 249--265.

30. “Fourier regularization for a backward heat equation” Fu, Chu-Li|Xiong, Xiang-Tuan|Qian, Zhi J. Math. Anal. Appl. 331(2007) : 472--480.

31. “A modified method for a backward heat conduction problem” Qian, Zhi|Fu, Chu-Li|Shi, Rui Appl. Math. Comput. 185(2007) : 564--573.

32. “A modified method for high order numerical derivatives” Qian, Zhi|Fu, Chu-Li|Feng, Xiao-Li Appl. Math. Comput. 182(2006) : 1191--1200.

33. “A modified method for a non-standard inverse heat conduction problem” Qian, Zhi|Fu, Chu-Li|Xiong, Xiang-Tuan Appl. Math. Comput. 180(2006) : 453--468.

34. “Fourier truncation method for high order numerical derivatives” Qian, Zhi|Fu, Chu-Li|Xiong, Xiang-Tuan|Wei, Ting Appl. Math. Comput. 181(2006) : 940--948.

35. “Two numerical methods for solving a backward heat conduction problem” Xiong, Xiang-Tuan|Fu, Chu-Li|Qian, Zhi Appl. Math. Comput. 179(2006) : 370--377.

36. “Error estimates of a difference approximation method for a backward heat conduction problem” Xiong, Xiang-Tuan|Fu, Chu-Li|Qian, Zhi|Gao, Xiang Int. J. Math. Math. Sci. (2006) : Art. ID 45489, 9.

37. “Fourth-order modified method for the {C}auchy problem for the {L}aplace equation” Qian, Zhi|Fu, Chu-Li|Xiong, Xiang-Tuan J. Comput. Appl. Math. 192(2006) : 205--218.

38. “Semidiscrete central difference method in time for determining surface temperatures” Qian, Zhi|Fu, Chu-Li|Xiong, Xiang-Tuan Int. J. Math. Math. Sci. (2005) : 393--400.

39. “A {F}ourier regularization method with logarithmic stability for a non-standard inverse heat conduction problem” Fu, Chu Li|Zhao, Hua|Qian, Zhi Math. Appl. (Wuhan) 18(2005) : 238--243.


其他