教师信息

主要课程

2020 秋   数学分析1

2020 BICMR微分几何暑期学校 复几何初步

2020 春   紧黎曼曲面

2019 秋   多复变与复几何初步   

2019 春   数学分析2

2018 秋   数学分析1

             多复变与复几何初步

个人简介

教育经历

2005–2010 Ph.D., Mathematics, Peking University, China. 

2001–2005 B.Sc., Mathematics, Peking University, China

工作经历

2013–Now Associate Professor, Department of Mathematics, Nanjing University, China 

2012–2013 Postdoctoral fellow, Mathematics Section, ICTP, Italy 

2010–2013 Lecturer, Department of Mathematics, Nanjing University, China

研究兴趣

Kähler Geometry and singularity theory

Geometric Analysis and related PDE

学术兼职

学术奖励

论文

https://mathscinet.ams.org/mathscinet/search/publications.html?pg1=INDI&s1=909321

[1] Jian, Wangjian and Shi, Yalong, Global Higher-Order Estimates for Collapsing Calabi-Yau Metrics on Elliptic K3 Surfaces, The Journal of Geometric Analysis, published online, 2020.


[2] Jian, Wangjian, Shi, Yalong and Song, Jian, A remark on constant scalar curvature Kähler metrics on minimal models, Proceedings of the AMS, 147(2019), no.8, 3507-3513. 


[3] Feng, Ke, Shi, Yalong and Xu, Yiyan, On the Dirichlet problem for a class of singular complex Monge-Ampère equations, Acta Math. Sin. (Engl. Ser.) 34 (2018), no. 2, 209–220. 


[4] Li, Haozhao and Shi, Yalong. A criterion for the properness of the K-energy in a general Kähler class (II). Commun. Contemp. Math. 18 (2016), no. 6, 1550071, 15 pp. 


[5] Li, Haozhao and Shi, Yalong The Futaki invariant on the blowup of Kähler surfaces. Int. Math. Res. Not. IMRN 2015, no. 7, 1902–1923.


[6] Li, Haozhao, Shi, Yalong and Yao, Yi. A criterion for the properness of the K-energy in a general Kähler class. Math. Ann. 361 (2015), no. 1-2, 135–156. 


[7] Shi, Yalong and Zhu, Xiaohua. Kähler-Ricci solitons on toric Fano orbifolds. Math. Z. 271 (2012), no. 3-4, 1241–1251. 


[8] Shi, Yalong and Zhu, Xiaohua. An example of a singular metric arising from the blow-up limit in the continuity approach to Kähler-Einstein metrics. Pacific J. Math. 250 (2011), no. 1, 191–203.


[9] Shi, Yalong. On the α-invariants of cubic surfaces with Eckardt points. Adv. Math. 225 (2010), no. 3, 1285–1307.

其他