学科报告

Julia sets of cubic rational maps with escaping critical points

发布人:发布时间: 2023-11-16

字体大小: 【小】 【中】 【大】

题目:Julia sets of cubic rational maps with escaping critical points

报告人:Jun Hu(美国纽约城市大学)

时间:2023-11-22 10:00-11:00

地点:鼓楼校区西大楼108教室

摘要:It is well known that the Julia set of a quadratic polynomial is either connected or a Cantor set. This Julia set dichotomy was extended to the Julia sets of all quadratic rational maps after Shishikura's proof on no Herman rings for any quadratic rational map. In 2000, Milnor proved that this dichotomy is true for the Julia sets of all bi-critical rational maps. In 2022, we showed that this dichotomy also holds for the Julia set of any cubic rational map with all critical points escaping to an attracting fixed point but doesn't hold for this type of rational maps if the degree is more than 3. In the talk, I will introduce my recent joint work with Arkady Etkin on classifying the Julia sets of cubic rational maps with all critical points escaping to a parabolic fixed point. 

报告人简介:胡骏教授师从 Dennis Sullivan 教授。主要的研究领域是低维动力系统和黎曼曲面上不同复结构组成的 Teichmuller 空间的不同描述。发表论文近40篇。美国自然科学基金数学博士后基金获得者。曾是加州伯克莱大学数学研究所、法国高等学术研究所、马里兰大学帕克分校、新泽西州立罗格斯大学纽瓦克分校、纽约州立大学石溪分校和上海纽约大学的访问学者或访问教授。

邀请人:杨飞 老师