运筹与优化

大维自协方差矩阵特征值的极限分布

发布人:发布时间: 2024-03-31

字体大小: 【小】 【中】 【大】

题目:大维自协方差矩阵特征值的极限分布

报告人姚建峰 教授(香港中文大学(深圳))

时间2024年4月1日 10:30

地点:西大楼108教室

摘要:In this work, we establish a limiting distribution for eigenvalues of a class of auto-covariance matrices. The same distribution has been foundin the literature for a regularized version of these auto-covariance matrices. The original non-regularized auto-covariance matrices are non invertible, thus introducing supplementary difficulties for the study of their eigenvalues through Girko’s Hermitization scheme. The key result in this paper is a new polynomial lower bound for a specific family of least singular values associated to a rank-defective quadratic function of a random matrix with independent and identically distributed entries. Another innovation from the paper is that the lag of the auto-covariance matrices can grow to infinity with the matrix dimension.

个人简介姚建峰教授于1990年获得巴黎萨克雷大学博士学位,是香港中文大学(深圳)校长讲座教授,数据科学学院统计学学科负责人。姚教授是IMS会士、伯努利数理统计与概率学会科学书记和执行委员会委员、《Journal of Multivariate Analysis》及 Random Matrices: Theory and Applications》副主编、曾任《Bernoulli》期刊编委,原香港大学教授、山东大学数学学院特聘教授。